Main points

• The Reason model:
 – is a useful model to assist investigation analysis
 – is only one component of the analysis process
 – can be improved to be more useful
Investigation methodology

- lot of expertise
- few written guidelines, particularly for analysis stage
- variation in approaches
- investigation environment is changing
- ATSB is developing Safety Investigation Guidelines (SIGs) for each stage and each major task of investigation process
Investigation analysis

• converting data to conclusions about:
 – contributing factors
 – safety issues
• few written guidelines
• relies on expert judgement
• involves many components
Components of analysis process

• clear definitions of key terms (e.g. ‘contributing factor’, ‘safety issue’)
• general guidelines on inductive reasoning
• structured process for:
 – reviewing data
 – identifying possible factors
 – testing existence, influence
 – evaluating practicability, suitability
Reason model
Reason model

- model of accident development
- emphasises a system approach
- many different versions, many different uses
- focuses on human factors
- represents some of the dynamics of accident development
- helps identify and organise factors/issues during analysis
Towards an ATSB model

• recognise ‘defences’ now much broader
• distinguish between management processes and management outputs
• modify definitions of components to make classification easier
• include technical failures
• minimise some terminology problems (e.g. ‘failure’ when referring to behaviour)
ATSB draft analysis model

- Organisational conditions
 - Preventative defences
 - Local conditions
 - Operational events
 - Recovery defences
Operational events

• observable actions of people, vehicles, technical components

• when such events increase accident risk, they are termed:
 – ‘unsafe acts’ (if associated with personnel)
 – ‘technical failures’ (if associated with technical components)
Local conditions

• conditions associated with the immediate context or environment in which operational events occur

• if increase accident risk, can be termed ‘local hazards’ or ‘local threats’
Local conditions (for unsafe acts)

- lack of skills, knowledge, experience
- fatigue
- stress, workload
- medical condition
- motivation
- habits, norms
- distractions
- environmental conditions
- task design
- equipment design
Defences

• measures put in place by an organisation to facilitate and assure safe performance of the operational components

• cannot control the existence of many undesirable local conditions and operational events, but can manage their influence

• if increase accident risk, can be termed ‘safety deficiencies’
Defences

• Preventative defences
 – procedures, checklists
 – training, education
 – equipment design/availability
 – work schedules
 – performance monitoring, supervision

• Recovery defences
 – warnings, alarms
 – barriers, crash worthiness design
Organisational conditions

• conditions that establish, maintain or otherwise influence the effectiveness of an organisation’s safety defences

• if increase accident risk, can be termed ‘safety deficiencies’
ASASI 2003

Organisation

Safety Management Processes

Organisational Characteristics

Defences

External Influences
Organisational conditions

• Safety management processes:
 – hazard identification, risk assessment
 – change management
 – training needs analysis
 – personnel management
 – safety statistics analysis

• Organisational characteristics:
 – priorities and goals
 – management commitment
 – organisational structure
 – communication style
Stages / questions for analysis

• Describe sequence of events *(What happened?)*
• Assess operational events *(How did it go wrong?)*
• Assess local conditions *(Why did it go wrong?)*
• Assess defences *(What could the organisation have done to prevent these problems?)*
• Assess organisational conditions *(Why were these measures not in place?)*
• Assess safety issues *(What improvements are left to be made?)*
Case Example

Cessna 310R
VH-HCP
Newman WA
26 January 2001
Background information

- aircraft operated by Air Support Unit, WA police service (aerial work)
- police pilot flew Karratha to Newman
- 3 police officers boarded
- departed Newman (1419), with full fuel
- arrived Kiwirrkurra (1700), added some fuel from already opened drum to auxiliary tanks
- departed Kiwirrkurra (1930)
Background information

- dark night, VFR, storms in area
- arrived Newman circuit 2150
- engine problem downwind, loss of control
- impact 3 km east of aerodrome
- 165 litres useable fuel on board
- not survivable
Operational events

• pre-flight planning and preparation (unsafe act)
• management of fuel tank selections (unsafe act)
• not detecting critical fuel situation (unsafe act)
• engines failed due to fuel starvation (technical failure)
• not maintaining control of the aircraft following engine failure (unsafe act)
Local conditions

- self-imposed pressure
- fuel management practices
- high workload
- dark night conditions
- skills to respond to engine failures without external visual reference
- physiological condition
Operational Events

- Pre-flight planning
- Fuel tank selections
- Monitoring fuel tanks
- Fuel starvation
- Maintaining control

Local Conditions

- Self-imposed pressure
- Fuel management practices
- Workload
- Dark night
- Skills for engine failure at night
Operator defences

- fuel planning procedures, training, supervision (preventative)
- night operations procedures, training and supervision (preventative, recovery)
- chief pilot training and preparation (preventative)
- role of police pilots
- human factors guidance/education
Operator organisational conditions

• ASU safety management program
• WA police guidance on safety management
• WA police processes for identifying safety issues
Defences associated with CASA activities

- regulatory and advisory information on VFR in dark night environments
- chief pilot approval processes
- surveillance
- check and training pilot approval process
- potential conflict of interest issues
- classification of operations for corporate operations
Defences

<table>
<thead>
<tr>
<th></th>
<th>Organisational Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel planning defences</td>
<td>Safety management program</td>
</tr>
<tr>
<td>Night operations defences</td>
<td>Guidance for safety management</td>
</tr>
<tr>
<td>Chief pilot preparation</td>
<td>Processes to identify safety issues</td>
</tr>
<tr>
<td>Regs and advice on night VFR</td>
<td></td>
</tr>
<tr>
<td>Chief pilot approval processes</td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Main points

• The Reason model:
 – is a useful model to assist investigation analysis
 – is only one component of the analysis process
 – can be improved to be more useful