A practical Human Factors approach to managing error in aviation maintenance

CMDR RICK SELLERS
Deputy Director - Human Factors
DDAAFS
Scope

- DDAAFS
- The importance of context
- The ADF maintenance environment
- Some examples of the practical application of HF concepts
- Future research?
WHO ARE WE?

WHAT DO WE DO?

WHERE ARE WE BASED?
CONTEXT:
THE ADF AVIATION MAINTENANCE ENVIRONMENT

The ADF aviation maintenance environment is variable and presents a number of unique Human Factors challenges.
• FIXED - WING
• ROTARY - WING
• UAV
• CIVIL CONTRACTOR

ADF AVIATION
MAINTENANCE
ENVIRONMENT
Deployed Operations

Challenges:

- The environment - heat, dust, visibility, stress
- In field maintenance
- Physical and mental fatigue
- At the end of an extended supply chain
- Difficulties with logistics and spares support
Combined and Joint Operations

Challenges:

• Non commonality of equipment
• Different operational standards
• Different levels of training and experience
• Comm’s - Language / Jargon
ADF AVIATION MAINTENANCE ENVIRONMENT

Civil Support - Bushfire/Flood/Search and Rescue

CHALLENGES:

Maintenance environment – Poor Weather, Heat, Visibility, High Winds, Smoke, Ash, Rain, Humidity

Aircraft servicing limits

Interoperation with civilian aircraft and agencies

Deployed maintenance requirements in the field
The need to address Maintenance Human Factors issues

Maintenance Human Factors have been a significant contributor to a number of ADF accidents and serious incidents...

<table>
<thead>
<tr>
<th>A/C TYPE</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C130</td>
<td>Main wheel down-lock disconnect</td>
</tr>
<tr>
<td>F18</td>
<td>Fuel line connection failure</td>
</tr>
<tr>
<td>SK50</td>
<td>Flight Control disconnect (NIAS)</td>
</tr>
<tr>
<td>F111</td>
<td>Main wheel departure</td>
</tr>
<tr>
<td>S70A</td>
<td>Fire extinguisher discharge</td>
</tr>
<tr>
<td>P3C</td>
<td>Control cable chaffing/failure</td>
</tr>
</tbody>
</table>
What can we learn from our safety reporting data?

- Sub standard conditions: 15%
- Sub standard practices: 10%
- Organisational influences: 21%
- Deficient supervision: 12%
- Error: 35%
- Violation: 7%
The real HF challenge...

‘The real challenge (for the HF practitioner) is converting the vast amount of (HF) information into understandable, practical (and workable) solutions for your organisation’.

(After - Johnson and Maddox, 2007)
The Human Element

Can we work on the up-side?

THE DOWNSIDE
Accident statistics show that a high percentage are caused by human inputs or errors.

THE UPSIDE
100% of solutions are also the result of Human input.
In response to the HF issues revealed through analysis of our safety reporting data, DDAAFS has developed an interactive MHF program.
The goal of our human factors training is to educate our personnel on latent human factors which can be drivers for error and violation, and to manage human error by producing an optimal relationship between humans and the characteristics of the workplace within which they operate.
Maintenance Human Factors program

• **12 Modules covered:**
 - Introduction
 - Human behaviour
 - Human performance
 - Situational awareness
 - Error and violation
 - Safety culture
 - Environmental factors
 - Communication
 - Teamwork
 - Stress, fatigue and other factors
 - MHF Review
 - Professionalism and safety reporting
Maintenance Human Factors program

- Course is designed for peer to peer delivery in modular stand alone format

- For every (HF) issue raised, an appropriate management tool is provided/discussed

- The package includes a number of integrated HF tools and processes designed to support cultural change and to manage maintenance error (and violation).
PRACTICAL INTEGRATED MHF TOOLS
How do we get our personnel to think Human Factors?

• The MHF course incorporates a modified version of the PEAR model (Johnson and Maddox, 2008) and it identifies four basic areas of consideration:

 — People
 — Environment
 — Actions
 — Resources
The ‘PEAR’ notepad

The PEAR notepad is designed for use at all levels and serves as a simple reminder of the Human Factors influences that may need to be considered in the maintenance workplace.
The ‘PEAR’ notepad

Before it goes ‘PEAR shaped’ THINK -

HUMAN FACTORS

Doing
- Physical limitations
- Sensory limitations
- Current
- Competent
- Authorised
- Briefed
- Fatigue

Thinking
- Trained
- Knowledge
- Experience
- Attitude
- Confidence
- Motivation
- Fatigue

Interacting
- Supervision
- Mentoring
- Relationships
- Communication
- Leadership
- Followership
- Stress

Physical
- Weather
- Location (in/out)
- Workspace
- Lighting
- Noise
- Distractions
- Housekeeping
- Hazards
- Day/Night shift

Organisational
- Management
- Supervision
- Manning levels
- Team make-up
- Leadership
- Pressures
- Morale
- Organisational culture
- Safety culture

Actions
- Get information
- Steps/Sequence
- Briefing/Authorisation
- Preparation
- Application of knowledge
- Application of skill

Resources
- Communications
- Management
- Supervision
- Inspection
- Certification
- Documentation

Time
- Personnel
- Tools
- Consumables
- Training
- Fixtures

Facilities
- Budget
- Publications
- Procedures
- DRN/CAMM2
- GSE

Heating
- Cooling
- Lighting
- PPE
- Spares
- Repairables

Before it goes ‘PEAR shaped’ THINK –

HUMAN FACTORS

NOTEPAD

NAVY | ARMY | AIR FORCE
People

Doing
• Physical Limitations
• Sensory Limitations
• Current
• Competent
• Authorised
• Briefed
• Fatigue

Thinking
• Trained
• Knowledge
• Experience
• Attitude
• Confidence
• Motivation
• Fatigue

Interacting
• Supervision
• Mentoring
• Relationships
• Communication
• Leadership
• Followership
• Stress
Environment

Physical
- Temperature
- Weather
- Location (in/out)
- Workspace
- Lighting
- Noise
- Distractions
- Housekeeping
- Hazards
- Day/Night shift

Organisational
- Management
- Supervision
- Manning levels
- Team make-up
- Leadership
- Pressures
- Morale
- Organisational Culture
- Safety culture
Actions

- Get information
- Steps / sequence
- Briefing / authorisation
- Preparation
- Application of knowledge
- Application of skill
- Communication
- Management
- Supervision
- Inspection
- Certification
- Documentation
Resources

- Time
- Personnel
- Tools
- Consumables
- Training
- Fixtures
- Facilities
- Budget
- Publications
- Procedures
- DRN / CAMM2
- GSE
- Heating
- Cooling
- Lighting
- PPE
- Spares
- Repairables
Maintenance Pre task checklist

Before any maintenance team begins a task, they must ensure they have satisfied all of the pre-requisite conditions needed to minimise the risk of error or deviation from the authorised procedure.

The pre-task checklist provides targeted questions relating to the planning of a maintenance task, it ensures that the planning process has reviewed the key human factors that may impact the task.
NAVY **ARMY** **AIR FORCE**

Maintenance HF Notepad

WORKLOAD
- Has the workload for individual team members been considered? Has each tradesman been allocated a single task at a time?

PRESSURE
- Have the organisational pressures (e.g., from op-tempo, serviceability requirements) been discussed with the team?

HAZARDS
- Have relevant Aircraft Paperwork, publications and work areas been inspected or reviewed for hazards or restrictions to safely starting or completing the task?

WORK AREA
- Is the task to be carried out in an adequate, safe (i.e., well lit, sheltered, warm/cool) environment with acceptable noise levels?

DISTRACTIONS
- Is the workplace and maintenance team free from unnecessary distractions? Is the task on a Safety Critical Item and System? If so, has the Safety Critical Maintenance Task environment (including IMFs) been briefed?

TEAM EXPERIENCE
- Has the team make-up been reviewed to ensure appropriate levels of task experience within the team?

AMD
- Have all necessary I/S's been entered into the AMD (e.g., panel removal, CTK's in use, power restrictions and references for them)?

HANDOVER
- If the task is being handed over, has a comprehensive handover brief been received on all aspects of the outstanding task using a structured handover document?

PROCEDURES/ BRIEFING
- Are there current, accurate, authorised procedures to complete the task IAW? Has the task procedure, actions, and inspection requirements been reviewed and briefed to all members of the maintenance team? Have actions for any unsafe conditions been discussed?

MAINTENANCE MANAGER REVIEW
- Has the Maintenance Manager reviewed the maintenance teams' intended course of actions or rectifications for any hazards or risks not identified by the team?

COMMS
- Have the communication requirements or difficulties of the task been reviewed? In an emergency can team members be seen and/or heard?

TIME
- Is there sufficient time available to carry out the assigned task before the aircraft is required or the end of shift or a handover period?

PERSONNEL
- Have the required number of personnel been allocated to the task IAW the relevant procedure?

SPARES
- Are there sufficient major components and breakdown spares available to meet the potential task needs (e.g., no cannibalisations anticipated)?

PPE
- Does the maintenance team have the appropriate PPE required to safely carry out the task? Are they trained to use it?

GSE
- Does the maintenance team have all the listed or required serviceable tools, consumables and GSE required to carry out their task? Is there easy CAMM2 access?

Any YES answer is a GREEN and acceptable for that element, a NO is a RED and requires action to address the problem or deficiency at the appropriate level. Any answer that is MARGINAL or ONLY JUST within limits is an AMBER and the element should be reviewed. The more ambers the more fully the task should be reassessed. Three or more ambers equates to a RED, again indicating that the task should be re-assessed at a higher level.
Shift/task/watch handover

- Analysis of incident and accident reports has identified the handover of tasks between teams and/or shifts as a major source of miscommunication and error.

- The use of a consistent and robust handover process should ensure better communication, decreasing the risk of subsequent error.
SHIFT/WATCH TASK HANDOVER SHEET

<table>
<thead>
<tr>
<th>UNIT:</th>
<th>AIRCRAFT/EQUIPMENT NO:</th>
<th>CANN 2 REFERENCE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIF/WATCH:</td>
<td>TASK DETAILS:</td>
<td></td>
</tr>
<tr>
<td>TIME/DATE:</td>
<td>MAINTENANCE PROCEDURE REFERENCE:</td>
<td></td>
</tr>
</tbody>
</table>

STEPS COMPLETED:

STEPS REQUIRED:

POWER RESTRICTIONS/SAFETY HAZARDS:

ITEMS/EQUIPMENT DISCONNECTED OR REMOVED FOR ACCESS:

TEST EQUIPMENT/TOGE IN USE:

PEAR ASSESSMENT CARRIED OUT, LIST ANY IDENTIFIED DEFICIENCIES:

ADDITIONAL COMMENTS, INCLUDING FAULT FINDING CARRIED OUT:

<table>
<thead>
<tr>
<th>NAME/RANK:</th>
<th>TRADE/POSITION:</th>
</tr>
</thead>
</table>
Interruptions and distractions

- Analysis of ADF incident and accident reports has identified interruptions and distractions during maintenance to be a significant driver for error, particularly errors of omission.

- An individual having been distracted or interrupted during a task is usually unaware that an action or step may have been missed or left incomplete.
Interruptions and distractions

• The Reality...

• INTERRUPTIONS AND DISTRACTIONS ARE COMMON IN THE AVIATION MAINTENANCE ENVIRONMENT
Interruptions and distractions

- MHF technique if staff interrupted:
 - Personnel should refer back to maintenance publications
 - We train our staff to stop and think - before interrupting someone on a maintenance task (is the interruption necessary?)

- IF STAFF ARE INTERRUPTED OR DISTRACTED ...
 - They are briefed to go back three steps or to a logical break in the maintenance task or process and recheck work before continuing.
The future?

- Do we need to re-think the way we conduct aviation maintenance?

- Can/should we accept interruptions and distractions during high risk/safety critical maintenance?

- Would you interrupt a surgeon carrying out open heart surgery to tell her that her husband is on the phone and wants to know what he should pick up for dinner?
How do we deal with the risk of error in the maintenance continuum?

- Risk to safety due to error
- IMI
 - Independent maintenance inspection and other
 - Post maintenance checks

Maintenance continuum
How do we deal with the risk of error in the maintenance continuum?

An independent maintenance inspection (although a good error trap) is equivalent to trying to catch the horse after it has bolted.

But could/should we try to prevent the horse from bolting in the first place?
A proposal... the ‘focused maintenance environment’

An environment where attention and communication is focused on the safe and accurate completion of the specific maintenance task. No unnecessary discussion or distraction should occur.

Interruptions from internal or external sources should only occur if they relate to the task at hand or if there are safety implications.
When would the ‘focused maintenance environment’ be used?

- The focused maintenance environment could be utilised for those tasks identified by the maintenance manager/supervisor (or OEM) as having a low error tolerance for safety (or having a high risk to safety due to error)

- An example might be the reconnection of a non redundant primary flight control
How would external personnel know that a ‘focused maintenance environment’ is in place?

• A simple identifier such as signs/arm bands/Hi-visibility vests etc, could be used to identify personnel in the ‘focused maintenance environment’ to external maintenance and other personnel.
The ‘focused maintenance environment’

Risk to safety due to error

Maintenance continuum

Focused maintenance environment and independent maintenance inspection (IMI)
Does the ‘focused maintenance environment’ imply that other maintenance is not important?

• NO

• The aim of the focused maintenance environment would be to reinforce the concept of airworthiness and to recognise that some areas of maintenance have a higher level of criticality to safety than others.
Conclusion

• Practical HF tools do not have to be complex

• It is sometimes worth reviewing how we do business holistically -
 - if you had a blank canvas is that how we would do it today?

• More research is needed in the area of error drivers within aviation maintenance

• Are concepts such as the ‘focused maintenance environment’ worthy of further consideration, discussion or research?
The desire for safety stands against every great and noble enterprise…

Cornelius Tacitus
(circa AD 56)