What’s the big deal about ageing aircraft?

Pieter van Dijk
ANZSASI Wellington 2011
Defining an ageing aircraft

- No universally agreed definition
 - Pre-World War II?
 - Pre-1950s?
 - Pre-1970s?
 - Chronologically based?
 - Any aircraft > 20 years?
 - Any aircraft > 30 years?
 - Flight hour based?
 - Any aircraft > 6,000hrs?
 - Any aircraft > 50,000hrs?
 - Combination of the above?
Limitations for ageing aircraft

- No life-limits in Australia
- A Fokker F.VII/3m could legally be used for Charter Operations in Australia
The facts of ageing aircraft

- **All** aircraft are ageing aircraft
- Each aircraft is just at a different stage of its life cycle
- How you design, build and operate an aircraft over its life determines the rate at which it ages
- Parallels with humans
Stages that determine the ageing process

1. Pre-manufacture
2. Manufacture
3. Post-manufacture
1. Pre-manufacture stage

- Certification basis
- Design flaws
- Materials processes
 - Heat treatment
 - Impurities
 - Incorrect storage
 - Incorrect coatings
Certification basis - fatigue

- Prior to 1953 – No specific fatigue requirements for small aircraft
- 1953 – First fatigue requirements for pressurised cabins
- 1969 – Fatigue requirements extended to wings & carry-through structure
- 1989 – Fatigue requirements extended to empennage + introduction of damage tolerance
Certification basis - crashworthiness

- Evolutionary – capturing lessons learned

- An older aircraft is unlikely to be as crashworthy as a later certificated design
2. Manufacture stage

- Flaws Fast-Track Ageing Process (FFTAP)
- Machining errors
- Non-alignment of component parts
 - Percussion installation
 - Making use of the “inherent aeroelasticity of the airframe”
- Incorrect fastener installation
 - Dry-fit
 - Skew-whiff
 - Reworked
 - Wrong part number
3. Post-manufacture stage

- Chronological age
- Flight hours
- Cycles (T/O, landings)
- Pressurisation cycles
- Exceedences
 - Reported
 - Unreported
- Standard of maintenance
 - Repairs
 - Modifications
 - OEM support programs (CPCP, SID, etc.)
- Use of unapproved parts
- Type of operations
 - Inside design assumptions
 - Outside design assumptions
- Hangarage
 - Cleaning
 - Protective coatings
 - Exposure to the elements
 (ocean, sun, rain etc.)
Bathtub curve

- Decreasing Failure Rate
- Constant Failure Rate
- Increasing Failure Rate

- Early "Infant Mortality" Failure
- Observed Failure Rate
- Constant (Random) Failures
- Wear Out Failures

Time
As any machine ages – it requires more maintenance
Maintenance costs increase with age
Additional maintenance activities not necessarily occurring
“No look” philosophy
 – Minimises “today” costs
 – Increases safety risks
 – Reduces long term positive ageing outcomes
Key points

- There is more to “ageing aircraft” than just how old the aircraft is.
- Each individual aircraft ages differently depending on the unique range of variables experienced by that particular aircraft.
- There are good “ageing aircraft” & there are bad “ageing aircraft”.

Good

Bad
Ageing failure modes

- **Structural**
 - Fatigue
 - Corrosion

- **Systems**
 - Wiring
 - Circuit Breakers
 - Relays
 - Pneumatic systems
 - Hydraulic systems
 - Cables
 - Seals

- **System of Maintenance**
Evidence of internal corrosion
Evidence of internal corrosion
Ageing wiring
Ageing battery cable
Hangarge impact
Factors exacerbating the ageing process

- Role changes
- New materials
- Configuration management
- Continued operations beyond original design life assumptions
 - Many GA aircraft designed and built in the 1960s–70s–80s had a 20 year design life expectation
 - Many owners have different perspective
New roles

- Conversions
 - Fire-bombers
 - Freighters
 - Tankers
 - Antarctic ops

- Roles
 - Mustering
 - Aerobatics
 - Gunships
 - Ground based to sea based
 - Carrier based to ground based
 - High altitude to low altitude ops
New materials - composites

- Expectation that new composite aircraft will remain in service as long as metal aircraft being replaced
- Concerns
 - Interfaces between composites and metals
 - Lightening strikes
 - Ramp damage
 - Effects of secondary loads
 - Consistency of field repairs
 - UV degradation
 - Cumulative effect of all the above over time?
Configuration Management

- Cumulative effect of repairs & modifications in close proximity over time?
Summary

- Each individual aircraft ages uniquely
- More maintenance required as aircraft ages – increased costs
- Risks increase with extended life & extended roles if System of Maintenance has not been adapted to take these aspects into account
Questions?